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Multiple cutoff wave numbers of the ablative Rayleigh-Taylor instability
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The cutoff wave number of the incompressible ablative Rayleigh-Taylor instability is calculated using
the physical optics approximation of the Wentzel-Kramers-Brillouin theory. It is found that a single
value of the wave number k can correspond to multiple modes with different eigenfunctions and growth
rates ¥. In the y-k plane the unstable spectrum is characterized by multiple branches with different
cutoff wave numbers, and eigenfunctions with different number of zeros. The theory provides a formula
for the cutoff wave number, valid in the regimes of interest for inertial confinement fusion capsules.

PACS number(s): 52.35.Py, 52.40.Nk

I. INTRODUCTION

The Rayleigh-Taylor instability occurs when a heavy
fluid is accelerated by a lighter fluid. In inertial
confinement fusion (ICF), the heavy fluid is the
compressed target accelerated by the low-density ablating
plasma. The classical treatment of the sharp-interface
Rayleigh-Taylor instability leads to a linear growth rate
given by y =V'|kg| A [1], where k is the instability wave
number, g the acceleration, and 4 the Atwood number
A=(p,—p;)/p,+p;) (p; and p, represent the light-
and heavy-fluid densities). For typical ICF parameters, a
classical Rayleigh-Taylor instability would produce an
unacceptably large distortion in the unablated shell, re-
sulting in an excessive degradation of the capsule perfor-
mance. It has been recently shown by many authors
[2-9] that the ablative convection is stabilizing and a
cutoff exists at sufficiently short wavelengths. Calcula-
tions of the cutoff wave number for a diffuse density
profile were carried out by Kull [7] and by Bud’ko nd
Liberman [8]. Using the assumption that the cutoff
occurs at wavelengths shorter than the density-gradient
scale length L =[(1/p)(dp/dy)]” !, Bud’ko and Liber-
man [8] used the geometrical optics approximation of the
Wentzel-Kramers-Brillouin (WKB) theory to derive the
cutoff wave number in the limit of V,/V'gL —0, where
V, is the ablation velocity of the overdense portion of the
target. o

The role of the parameter 2=V, /V' gL can be easily
deduced by using the following intuitive form of the in-
stability growth rate: y~V'kg/(1+kL)—kV,. By set-
ting y =0, it is easy to show that, for = >>1, the cutoff
wave number occurs at wavelengths longer than the
density-gradient scale length (k,L ~1/32?<<1). On the
contrary, for 2 <<1, the cutoff occurs at wavelengths
shorter than L (k_.L ~1/3>>1). The relative size of the
cutoff wavelength to the density-gradient scale length
suggests the type of mathematical technique that needs to
be used. It is well known that short-wavelength modes
with k.L >>1 can be investigated using the WKB ap-
proximation and long-wavelength modes (k.L <<1) have
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a characteristic “boundary layer” structure in the sharp
gradient region and they can be studied with a sharp
boundary model.

In this paper, we derive the physical optics approxima-
tion of the WKB theory applied to the ablative
Rayleigh-Taylor instability for £ <<1, and we show the
existence of multiple branches in the instability spectrum.
Each branch has a different cutoff wave number and an
eigenfunction characterized by a different number of
zeros. Furthermore, since in typical ICF targets the den-
sity profiles are rather steep (direct drive) or the ablation
velocity is rather large (indirect drive), the parameter
V,/V'gL is only approximately less than 1. The physical
optics approximation also provides the next-order correc-
tion (in ¥, /V'gL <1) to the largest cutoff wave number.

II. THE WKB APPROXIMATION

We consider an equilibrium in the frame of reference of
the ablation front with the heavy fluid of density p, mov-
ing with velocity U,=—V,e, (Fig. 1). The density
smoothly varies from p, to a lower value p,;, and the ve-
locity increases according to the conservation of mass
flow (pU =const). The fluid is subject to a force field

FIG. 1. Density and velocity profiles. The ordinate scale is
given in arbitrary units. The subscripts / and 4 indicate the
light and heavy fluid, respectively.
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g=ge, opposite to the density gradient (g <0), and the
density profile has a finite density-gradient scale length in
the ablation region (y =0) with characteristic value L
[L(0)/Ly~1]. To treat the linear stability of ablation
fronts, we consider a simplified incompressible model for
the perturbation that is valid for subsonic ablation flow
(V, <<C;, where C; is the sound speed),

dp o

dr +pV-v=0,

dv

2y — _vp+ 1
dt P Tpg (1)
V-(v—=U)=0,

where U is the
d/dt=09/0t+v-V.

The set of linearized conservation equations can be
written in the following form:

equilibrium  velocity and

r H = —
<+, |n= v, /UL , )
Lo |o,=—ip/epU (3a)
€ 5% x lﬁ EP ’ a
L oo —1/f 5=

90,0, = —ib, /€, 4)

where e=1/(kL,), =y /Ly, i=p/p, G=—g —U?/L,
E=L/L,, and T=y /kU. Equations (2)—(4) can be com-
bined into a single fourth-order ordinary differential
equation

r 4 | T -
—+d,—a/L| €', |—+3; 13,7,
2| L 5 27—
—€& |—+3,—~1/L |y, | +5,02/L=0, (5)
€

where a= —Eaﬁln(U/G) and 0?’=G/k?U’L,. Since
Eq. (5) cannot be solved exactly, we look for an approxi-
mate solution when the parameter 2*=¥2/gL,, is much
less than wunity, and we order e~2<<1, o~1,
G~—g[1+0(€))], and a~1+0(e?). The validity of
the chosen ordering will be verified a posteriori. We ap-
ply the WKB theory to the fourth-order equation, and we
adopt the following ansatz for the perturbation:
U,= A (9)exp[S(9)/€], where A(p) and S(J) are two
slowly varying functions of p: i.e., aﬁlnS~aﬁlnA ~1.
The equation for S(J) (geometrical optics) can be easily

derived by retaining the lowest-order terms (~1) in Eq.
(5):

(S'—D)XS"?—1)+02/L=0. (6)

This equation is identical to the one derived in Ref. [8].
By focusing to the mode corresponding to the cutoff wave
number k, [limk__kcy(k)—>0+ ], we solve Eq. (6) for

|| << 1 and find the four roots
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$,=av2) [PlgH 2 -1
¥y
S,=—/vV2) [(gH)" 2417 1dp
o,y )
S,=(1/v2) [*[(g ) =7*1dp ,
¥y
Sy=—/vV2) [(g) 41V 1dp
where '
— r 1
=112V = — | 1t——
gt=1+2v'Q, r V3 1_2‘/Q , (8)

Q(?)E%—az/f, and y is an arbitrary point. Observe
that Egs. (7) and (8) are valid for nonvanishing Q and the
small 7 corrections are important only for [§|—>to
where ¢~ —0, and they can be neglected for any other
value of y. If Q vanishes at some point, Eq. (6) can be
easily solved in the neighborhood of that point and
I'—0" yielding S’'==+(y —y)/V2. This result can also
be recovered from Eqgs. (7) and (8) by neglecting 7 even
for Q =0. We emphasize that the parameter 7 is only im-
portant for S; and S, when |[§|— . While in Ref. [8]
the analysis is limited to the geometrical optics [Egs.
(6)-(8)], in this paper we extend the solution including
the physical optics approximation. By retaining the €
corrections in Eq. (6), the following expressions for A4 (y)
are derived:

A,=a,FT($), A,=a,F*(p),

A3=a3F_(j)\), A4=a4F_(j7\) ’ 9)
1/4 :
foy= | O
FO= T | o aeg )7
3@
Xexp | F 8fr; G | (10)

It is important to recognize that none of the eigenfunc-
tions represented by Egs. (7)-(10) satisfies the boundary
conditions of vanishing amplitude at both + c and —
simultaneously. This observation is supported by the
form of the exponential terms in S; and 4; and by the
asymptotic behavior of Q () [Fig. 2(a)]. It is readily de-
rived from Eqgs. (7)-(10) that in order to satisfy the
boundary conditions at y-—+ o, the coefficients
a,,a;,a, must vanish (a,=a;=a,=0 and a,#0). On
the contrary, to satisfy the boundary condition at
y — — o, the coefficient a, has to vanish (a, =0). Thus
the solution valid for positive y has to be matched to a
different solution valid for negative y. The necessary con-
dition for the matching to occur is that Q (y) vanishes at
some point and the A4;’s become singular. The solid line
of Fig. 2(a) represents a possible behavior of Q(y) that
would allow the matching. In general there must be two
points (turning points) where Q vanishes (§ =9, and
y =¥, with $; >¥,) and at such points, the WKB approx-
imation breaks down: i.e., the A4;’s become singular. By
defining J, the point of minimum of Q@
[Q'($0)=0, Q(§y) <0, Q"(§,)>0], we order Q(yy)~e€
and y, —9,~V'e. This ordering is verified later by the
matching conditions of the solution between the turning
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FIG. 2. (a) Plot of Q vs . The dashed line represents a
behavior without zeros [(02/L )pa; < +]. The solid line shows a
Q(9) with two zeros [(02/L)pe>1]. For large [$],Q ap-
proaches 1. (b) Plot of the WKB solutions in the outer regions
$>>9, and p <<P,.

points with the WKB approximations. As shown in Fig.
2(b), three regions can be identified: (1) the first outer re-
gion for $ >3,, where 0, = A,(9)exp[S,(¥)/€]; (2) the
second outer region for y<¥, where
U, = A,exp[S,/€]+ A;exp[S;/€]+ A,exp[S,/€]; and
(3) the inner region between the turning points
9, <9 <9,;. To determine the solution in the inner re-
gion, we look at the behavior of the solution in the first
outer region for Ve <<$ —9, << 1 and we approximate Q
with its Taylor expansion Q~=~Q,+ Q¢ (J —5,)*/2. By
setting § =%, a straightforward manipulation yields

Y —Yo)
0,(y =9y )=a,X"exp —--X/Q"’\2 exp % ,
(11)
where » )/V'e, and
Y
v=— 1_ 5/2E3A —%——O“ 21 : (12)
Voy 271G Vgy %€
va | 6o |V (2608
a2= 2 1/4 A (13)
0 |U(.VO)|

The function given by Eq. (11) shows a two scale struc-
ture (the two scales being € and V'¢), different from what
is found in the familiar second-order WKB solution near
the turning points. Thus, in order to perform the match-
ing, the solution between the turning points must retain
the two scale structure and behave as
v, =@(X Jexp[ —(§ —$0)/V2€]. Substituting into the
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general Eq. (6) and retaining the lowest-order terms in €
leads to the following equation for #:

[0 +v+i—1Ea=0, (14)

where £=%(Q¢ )!/*. Remarkably, the equation for @ is
just a second-order equation (instead of fourth order) and
it can be solved exactly. The solution of Eq. (13) is the

combination of two parabolic cylinder functions
=BD (§)+CD (—§). Matching the inner with the
outer solution for 9 >3%, leads to C=0 and

B =a,/(Q¢)*/*. In order to match the rapidly varying
exponential term {exp[—(J—3,)/ V2€]} of the inner
solution with the outer solution in the region y <J, the
coefficients @, and a; of the outer solution must vanish.
Therefore as § approaches 5, (Ve<<p,—p <<1), the
outer solution assumes the following form:

v,y =P )=a,(—X)’exp \/Q”A1
B —9o) |
Xexp | — = |, (15)
P V2 |
where
V3| GGy 2605 |
ay=a4— —~ (16)
QO | |U(yo)! l Qo

Focusing on the inner solution, the asymptotic behavior
of the parabolic cylinder function is easily derived:

& v lexp[£/4],
—&%/4), v=n (17b)

D (§——o)~ vF=h (17a)

D,(§— — o)~ E"xp|

where n is an integer. By matching the inner solution
with Eq. (15), we immediately deduce that v must be an
integer (v=n with n=0,1,2,...), a;=(—1)"a,, and
D, (&)=2"""exp[ —E*/4]H,[E/V'2] (H, is the Hermite
polynomial.) The condition v=n represents the equation
for the cutoff wave number and can be rewritten in the
extended form

Qo 1
Vvoy 2

1 3
420y LBy

,  (18)

1
— 4=
"

where e=1/(k_L,). Observe that Eq. (18) yields Q,~€
and o~1, in agreement with the initial assumptions.
Equation (18) can be solved perturbatively by expanding
k. in powers of £ <1 (k,=ky—Zk, - -+ ). A short calcu-
lation yields the following expression for the cutoff wave
number:

172
k.=koi1—B=

2n +1) | ==%(5,)

‘, (19

o)l B=V'LGolp,/

d’Q o
dy

31
2’72 L

)

Yo
where ko=2[lg|/L($,)]'*/|U®
p(Po),and n =0,1,2, ... .
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ITII. DISCUSSION

The first important result of Eq. (19) is that multiple
cutoff wave numbers exist for different values of n. In the
v,k plane, this leads to an unstable spectrum character-
ized by multiple branches lying one below the other. The
branch with the largest cutoff and therefore the largest
growth rate is for n =0. Although the lowest-order
cutoff wave number k, was previously found in Ref. [8],
we emphasize the importance of the first-order correction
to determine the existence of the multiple branches and
to provide a more accurate formula for the n =0 branch
when 2 =<1. Table I provides a comparison between the
cutoff wave number of the n =0 branch predicted by Eq.
(19) and the one of Ref. [8] for the following form of the
density profile:

Ph
1+ 4

. (20)

p(y)= 1+2 Atan_l—LL-

™ 0

Observe that the first-order correction in X becomes im-
portant when the density profile is rather steep (direct-
drive ICF) or the ablation velocity is rather large
(indirect-drive ICF). Since the eigenfunction in the inner
region is proportional to H,(£), the integer n determines
the number of zeros of the eigenfunction. Figure 3 shows
the normalized eigenfunction for the n =0, 1, and 2
modes and a smooth density profile. Observe the degra-
dation of the matching between the outer WKB approxi-
mations and the inner solution as 7 increases. This effect
is due to the increasing magnitude of the higher-order
corrective terms that scale as 2k,(n)/k,. Thus we ex-
pect that the matching cannot be performed for
3k,(n)/ky>1 and the number of branches does not
exceed N with 2k (N)/ky,>1. Equation (19) has also
been solved numerically, and the results have been com-
pared with the analytical predictions. Figure 4 shows the
unstable spectrum of an equilibrium configuration typical
of direct-drive ICF with g=5X10" cm/s?
V,=17.5X10* cm/s, 4=0.9, and L,=2 pm. Three
branches have been found with n =0, 1, and 2. For this
set of parameters 2k,(3)/ky=1.01 and the predicted
number of branches is indeed N =3. Equation (19) pre-
dicts the following values of the cutoff wave numbers:
k.(n=0)=4.28 um~!, k/(n=1)=2.83 pum™!, and
k.(n =2)=1.37 um~!. As expected, the accuracy of Eq.
(19) in predicting the cutoff wave number degrades as n

V(y) Inner

V@)
. SE
WKB WKB
WKB
2
1
1

[
wia {|
IR _\V
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TABLE 1. Comparison of the cutoff wave number for the
n =0 branch predicted by Eq. (19) and Ref. [8] for 4 =0.9,
g =5X10" cm/s?, v, =7.5X 10* cm/s, and varying L,. The pa-
rameter 2 is also given.

Cutoff wave number

Eq. (19) Ref. [8]

Ly (um) (um™") (um™') 3
50 1.05 1.10 0.015
10 2.22 2.66 0.034
5 2.99 3.48 0.047
3 3.68 4.49 0.061
2 4.28 5.50 0.075

1 5.33 7.78 0.11
0.5 6.10 11.01 0.15
increases. For the same equilibrium parameters, the

geometrical optics approximation of Ref. [8] predicts a
cutoff of the n =0 mode at kK =5.5 um ™! with a relative
error of approximately 30%. In order to simplify Eq.
(19), we focus on typical ICF equilibria with 4 =1 and
density profile given by Eq. (20) to determine an approxi-
mate value of §,, §,=~0.25[ V' 8+7>—7]. Substituting ,
into the expressions for Q(,) and L£($,), we derive the
following approximate form of the cutoff wave number:

k,~ko[1—2V7Z(n+1)] (n=0,1,2,...) 1)

and k(=~0.83/2ZL,. In addition to the cutoff wave num-
ber, the WKB approximation also provides the position
where the short-wavelength modes are localized. The
peak of the eigenfunction is located at the point $* where
S'(9*)=0. Using Eq. (6) at § =p* we derive an equation
fory*:

LX3*)=0(*2/L3*) . 22)

For any given I', Eq. (22) can be solved for the unknown
y*. It follows immediately that the mode corresponding
to the cutoff wave number (I'=0) has the peak of the
eigenfunction at — oo where 1/F =0. More generally, it
can be deduced from Eq. (22) that as the wave number of
the mode increases and the growth rate decreases, the
peak of the eigenfunction is shifted downstream in the
light-fluid region.

To verify the accuracy of the incompressible model in
predicting the unstable spectrum for X <1, we compare

FIG. 3. Plot of the normalized eigenfunc-
tion P=0,(9)exp[(§)—Po)/V2e], for the
n =0, 1, and 2 modes and the following equi-
librium parameters: 4 =0.8, g =10"° cm/s?,
v, =10* cm/s, and L,=10 um.
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FIG. 4. Plot of the growth rate vs the wave number for the
n =0, 1, and 2 branches and the following equilibrium parame-
ters: A4=0.9, g=5X10" cm/s? v,=7.5X10* cm/s, and
Ly=2 pm.

the growth rates derived from Egs. (2)-(4), with the nu-
merical results of Ref. [3], where the full set of fluid equa-
tions, including thermal transport, has been numerically
solved. According to Ref. [3], the growth rate depen-
dence on the mode wave number is well fit by the follow-
ing formula:

y=0.9Vkg —BkV, , (23)

where B is a parameter varying between 3 and 4. Figure
5 shows an unstable spectrum obtained from the numeri-
cal solution of the incompressible model for ==0.14 and
Takabe’s formula for B=3-4. Observe that the predic-
tions of the incompressible model (for = < 1) are in good
agreement with the more general results of Ref. [3]. For
the same value of 2, Eq. (19) yields the normalized cutoff
wave number V/ k. V?/g =0.26. In order to check the
validity of the incompressible mode for arbitrary equili-
bria, we also compare the incompressible spectrum for
= >>1 with the result of Ref. [3]. We find that the in-
compressible model predicts a larger ablative stabiliza-
tion than Eq. (23). For X >>1, the incompressible growth
rate can be written in the following form:
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FIG. 5. Plot of the normalized growth rate V'y /kg vs the
normalized wave number V kV2/g, for the incompressible
model (+), Eq. (23) with f=3(0), and Eq. (23) with B=4({).

y=VAKg —kv,1t4 (24)
1—4
in agreement with the results of Ref. [4]. For 4 ~1, Eq.
(24) predicts a large stabilization that is not observed in
the numerical simulations [3,5,9]. We conclude that the
incompressibility assumption breaks down of = >>1, and
the effect of finite thermal conductivity must be retained
(7]
IV. CONCLUSIONS

We have derived the physical optics approximation of
the WKB theory applied to the incompressible ablative
Rayleigh-Taylor instability, and we have found the ex-
istence of multiple branches in the unstable spectrum.
The calculated cutoff wave number is also reasonably ac-
curate for configurations with rather steep density gra-
dients or large ablation velocity (£ S 1). Although this is
a derivation of multiple unstable branches in the presence
of an equilibrium flow, this result is not surprising, as in
the classical Rayleigh-Taylor instability multiple modes
also exist. However, no branch experiences a cutoff in
the classical treatment, and the growth rate is monotoni-
cally increasing with the mode wave number.
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